Time: 3 hours

b

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR (AUTONOMOUS)

B. Tech II Year I Semester Regular & Supplementary Examinations Nov/Dec 2018 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

(CSE,CSIT)

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

1 a Using replacement process, Prove that $P \to (Q \to P) \Leftrightarrow \neg P \to (P \to Q)$ 5 M

b Use indirect method of proof, to prove that $(\forall x) (P(x) \lor Q(x)) \Longrightarrow (\forall x) P(x) \lor (\forall x) Q(x)$

OR

a Obtain PCNF of $A = (p \land q) \lor (\sim p \land q) \lor (q \land r)$ by constructing PDNF. 6 M 2 **b** Show that $S \lor R$ is a tautologically implied by $(P \lor Q) \land (P \to Q) \land (Q \to S)$ 6 M

UNIT-II

- **a** Determine A/R, when A = $\{1, 2, 3, 4\}$ and R = $\{(1,1), (1,2), (2,1), (2,2), (3,4$ 5 M 3 (4,3), (3,3), (4,4) be an equivalence relation on R.
 - **b** Prove that the set of all integers Z with the binary operation *, defined as 7 M a*b = a + b + 1, $\forall a, b \in Z$ is an abelian group.

OR

- **a** $f: R \to R$ such that f(x) = x(x+1) and $g: R \to R$ such that g(x) = x/3 then verify 7M 4 that $(g \circ f)^{-1} = g^{-1} \circ f^{-1}$
 - **b** The necessary and sufficient condition for a non empty subset H of a group 5M (G, *) to be a subgroup is $a, b \in H \Rightarrow a * b^{-1}$

UNIT-III

- a Consider a set of integers from 1 to 250. Find how many of these numbers are 5 6 M divisible by 3 or 5 or 7. Also indicate how many are divisible by 3 or 7 but not by 5 and divisible by 3 or 5.
 - **b** Obtain the coefficient of (i) $x^3 y^2 z^2$ in $(2x y + z)^9$ (ii) $x^6 y^3$ in $(x 3y)^9$ OR 6 M

- **a** How many solutions does the equation $x_1 + x_2 + x_3 = 17$ have, subject to the 6 M 6 constraints (i) x_1, x_2, x_3 are non-negative integers. (ii) $x_1 \ge 1, x_2 \ge 2$ and $x_3 \ge 3$.
 - **b** How many ways can the letters of the word "COMPUTER" be arranged. 6 M (*i*) How many of them begin with C and end with R. (ii) How many of them do not begin with C but end with R.

UNIT-IV

7 6 M **a** Using generating function to solve the recurrence relation $a_{n+2} - 2a_{n+1} + a_n = 2^n$, with initial conditions $a_0 = 2$, $a_1 = 1$

Solve the recurrence relation
$$a_n = a_{n-1} + \frac{n(n+1)}{2}$$
, where $a_0 = 1$ by substitution 6 M

Page 1 of 2

7 M

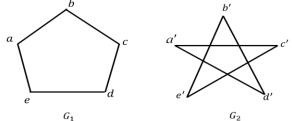
OR

8 a Solve $a_n - 9 a_{n-1} + 20 a_{n-2} = 0$ with initial conditions $a_0 = -3$, $a_1 = -10$. 5 M b Solve $a_n - 9a_{n-1} + 26a_{n-2} - 24a_{n-3} = 0$ for $n \ge 3$ with conditions $a_0 = 0$, $a_1 = 1$ and 7 M $a_2 = 10$

UNIT-V

9	a Show that in any graph the number of odd degree vertices is even.	5 M	
	b Draw the graph represented by given Adjacency matrix		
	$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 2 & 0 & 0 \end{bmatrix}$		
		7 M	
	(i) $\begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 2 \end{vmatrix}$ (ii) $\begin{vmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 2 & 2 \end{vmatrix}$		
	$\begin{bmatrix} 0 & 2 & 2 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 2 & 0 \end{bmatrix}$		
OR			

10 a Identify whether the following pairs of graphs are isomorphic or not? 7 M



b Define the following graph with one suitable example for each graph
(i) complement graph (ii) subgraph (iii) induced subgraph (iv) spanning subgraph

*** END ***